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Abstract 

Matricial direct methods were used to phase 28 strong 
low-resolution (100-19 A) structure factors of crystal- 
line yeast tRNA~ et (P6422, z = 12) which had not been 
phased by multiple isomorphous replacement (MIR). 
The starting phase set was composed of 107 terms in 
the resolution range 32-14 A which had been phased by 
MIR. Extending the phase set to the strong low- 
resolution terms significantly improved the electron- 
density map. The goal of establishing a well defined 
molecular boundary was clearly achieved and provided 
the basis of a successful structure determination to 
4.0 A resolution. The phases determined by direct 
methods deviated from the phases subsequently calcu- 
lated from the refined atomic coordinates by an 
unweighted average value of 73 o; 36% of these were 
determined with a figure of merit greater than 0.75 and 
showed a discrepancy of only 44 o. The accuracy of the 
phases determined by matricial methods compared 
favorably with those of the starting MIR phase set. An 
analysis of the resolution dependence of the intensities 
suggests plausible substructures as the basis of the 
normalization leading to the successful extension of 
phases to very low resolution. 

Introduction 

Direct methods, long a valuable tool in the crystal 
structure determination of small molecules, have been 
increasingly applied in the past decade to crystal- 
lographic studies of biological macromolecules (de 
Rango, Mauguen & Tsoucaris, 1975; Sayre, 1974; 
Podjarny & Yonath, 1977; Collins, Brice, La Cour & 
Legg, 1976; Bricogne, 1974). These methods have been 
used principally to improve the phases obtained by 
multiple isomorphous replacement (MIR)* and/or to 

* In principle, direct methods could be applied to improve 
approximate phases obtained by molecular replacement, a tech- 
nique in which a known molecular structure is placed in the same 
orientation and position as the same or similar structure in different 
crystals. 
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extend the phase determination to resolutions higher 
than those obtainable by MIR. In a rather special case, 
direct methods have also been used to map the 
distribution of heavy atoms in isomorphous derivatives 
of protein crystals (el Wilson, 1978, and references 
therein). 

Direct methods operate in either real or reciprocal 
space. Historically the first approaches were applied in 
reciprocal space and exploited either algebraic or 
probabilistic relationships between structure factors 
derived from a priori assumptions about the nature of 
the scattering density. For example, the Sayre equation 
(Sayre, 1952) gives an algebraic relationship between 
structure factors based on the constraint that the 
density function is organized in non-overlapping 
approximately equal atoms of known shapes. In cases 
where exact algebraic expressions cannot be used, 
probabilistic relationships among a small number of 
structure factors can be derived by assuming random 
distributions of scattering units in the cell (Cochran & 
Woolfson, 1955; Karle & Karle, 1966). Prior 
knowledge of the distribution of the scattering units can 
be used to improve these methods (Main, 1976). 

When applied to macromolecular studies, these 
methods have produced their most impressive results at 
high resolution where the scattering units are the 
individual atoms and, therefore, the underlying 
assumptions are most correct. This is particularly 
true of the algebraic relationships such as Sayre's 
convolution equation (Sayre, 1972) and of algebraic 
matricial methods (Knosow, de Rango, Mauguen, 
Sarrazin & Tsoucaris, 1977; Navaza & Silva, 
1979). Statistical matricial methods (Tsoucaris, 
1970; Castellano, Podjarny & Navaza, 1973) were also 
originally applied to protein crystals at high resolution 
(de Rango, Mauguen & Tsoucaris, 1975; Podjarny, 
Yonath & Traub, 1976). Recently, Podjarny & Yonath 
(1977) have shown that, at least in one favorable case, 
these methods can be successfully applied at medium 
resolution (5-3 A) to extend the phases of crystalline 
tRNA Phe to higher resolution. This was possible, 
however, only after the MIR phases had been improved 
by real-space techniques. 
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The second approach is applied in real space and 
addresses itself directly to a provisional electron density 
by modifying it according to chemically reasonable 
constraints - often equivalent to those underlying 
certain reciprocal-space techniques. New and presum- 
ably improved phases are obtained from the Fourier 
transform of the modified density and combined in 
some weighted way with the previous phases and the 
observed amplitudes. With the advent of 'fast Fourier' 
algorithms these techniques often proved compu- 
tationally more efficient and flexible and in certain 
cases have proven a valuable complement to their 
reciprocal-space counterparts. They are discussed in 
the following paper (Schevitz, Podjarny, Zwick, 
Hughes & Sigler, 1981) where real-space direct 
methods were used to improve the low- and medium- 
resolution structure factors of crystalline yeast 
tRNA~ et. 

Whether direct methods are applied to macro- 
molecular crystal structures in real or reciprocal space, 
either alone or in combination, the trend has been either 
to improve the phases or to extend them to higher 
resolution. In this paper we report the successful 
application of reciprocal-space direct methods to 
very-low-resolution (100-19A) structure factors of 
yeast initiator tRNA that were not phased by MIR 
(Schevitz, Navia, Bantz, Cornick, Rosa, Rosa & Sigler, 
1972; Schevitz, Podjarny, Krishnamachari, Hughes, 
Sigler & Sussman, 1979). 

A novel element of this structure analysis was the 
use of statistical matricial methods to extend the phase 
determination to a resolution lower than the MIR phase 
set. Our effort was motivated by our inability to define 
confidently the molecular boundary in the MIR map 
which we attributed to the fact that 28 of the strong 
low-resolution (100-19 A) terms - some of the very 
strongest in the diffraction pattern - were not phased 
and therefore omitted from the map. Normally, the 
omission of such terms is compensated by a large 
number of well phased terms of comparable or higher 
resolution. Our MIR phases were apparently not 
sufficiently accurate to compensate for the absence of 
the very strong low-resolution terms. Indeed, phases 
later calculated from the refined structure in the range 
100-14 A deviated from the MIR phases by a mean 
value of 77 °. The absence of a clearly discernible 
molecular envelope not only confounded a detailed 
interpretation of the map, but also prevented us from 
exploiting the fact that over 80% of the crystal 
structure was solvent and therefore potentially amen- 
able to phase improvement by real-space 'solvent 
leveling' (Hendrickson, 1981; Bricogne, 1974; Nixon & 
North, 1976). Our failure to phase these lower- 
resolution terms by MIR resulted from the poorly 
ordered crystal lattice (B = 150 A 2) which reduced the 
average intensity at 4 A resolution to less than 1% of 
the value at 20 A resolution. To record accurately the 

very weak high-resolution intensities, each of the 
oscillation photographs was obtained by exhaustively 
irradiating a separate crystal. In so doing, the stronger 
low-resolution reflections were over-exposed and far 
exceeded the dynamic range of even the most weakly 
exposed film. Even if relatively accurate amplitudes had 
been obtained for the low-resolution terms of the parent 
and derivatives, it is likely that the heavy-atom 
contribution would not have been large enough to 
provide accurate difference amplitudes to phase the 
strongest of these reflections. To circumvent this 
problem the inner core of intense parent intensities was 
determined from a special set of weakly exposed 
precession photographs and the phases of 28 of the 
very strongest low-resolution reflections were deter- 
mined by applying matricial methods to the amplitudes 
and MIR phases of 107 other reflections. The details of 
this procedure are explained below; however, it is 
evident from Fig. 2 that there was substantial enhance- 
ment of the contrast between molecule and solvent. The 
improved map enabled us to define confidently 65% of 
the unit cell as solvent. 

The map derived from the application of reciprocal- 
space procedures was improved enough to serve as a 
basis for the construction of a molecular model. This 
model was constrained by the requirement that 
interpretation must accommodate the position of four 
heavy-atom markers covalently linked to specific 
nucleotide residues (Rosa & Sigler, 1974; Pasek, 
Venkatappa & Sigler, 1973; Tropp & Sigler, 1979) and 
that the molecule was composed of helical domains of 
the clover-leaf hydrogen-bonded scheme. The model 
ultimately served as a basis for a constrained restrained 
least-squares refinement (Sussman, Holbrook, Church 
& Kim, 1977; Sussman & Podjarny, 1981) in which 
elastically linked helical segments of the structure were 
refined as rigid bodies against the low-resolution 
amplitudes. The size of the rigid bodies was pro- 
gressively reduced to nucleotide bases, ribose and 
phosphate groups and the entire structure was refined 
to 4 A resolution with a residual of 25% (Schevitz, 
Podjarny, Krishnamachari, Hughes, Sigler & Sussman, 
1979). 

Methods and results 

Multivariate analysis was used to predict 28 reflections 
in the resolution range 100-19 A. The details of the 
theory are described elsewhere (Tsoucaris, 1970; 
Castellano, Podjarny & Navaza, 1973; Podjarny, 
Yonath & Traub, 1976). Here we only describe the 
basic assumptions underlying the method and the most 
important equations used in applying it. 

(a) Normalizing structure factors at low resolution 

The structure amplitude F(h) for reflection h is 
obtained from its intensity I(h) by 
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IF(h)12 = A 1(11) exp(2Bts2), (1) 

where A is a scale factor, B t is a temperature factor, 
and s is sin 0/2. We obtain normalized structure factors 
E(h) (Main, 1976) from 

IE(h)[2 = A I(h)/(IV(h)12) exp (--2B, s2), 

where ( IF(h)  12) is the mean amplitude for the zone of 
resolution defined by Ihl. If the structure is assumed to 
consist of Ng group scatterers, each with n I atoms, then, 
following Main (1976), the group scattering factor gi(h) 
is defined for correctly positioned atoms as 

/11 

gt(h) = Y f :  exp[Znih.(rj--  Ri)], (2) 
j = l  

where R~ is the position of the center of mass of the/ th 
group, so that 

Ni 
F ( h ) =  Y gl(h) exp(2nih.Ri) 

i = 1  

and, for randomly positioned groups, 

s~ 
( IF(h)12)=  Y Ig,(h)l 2 (3) 

i=1  

From (2) 

nl nl 

Igi(h)12= ~ ~ f j ~ e x p 2 n i h . ( r j - r t ) .  (4) 
j=ll=l 

By spherically averaging over all group orientations, we 
obtain at low resolution* 

nt 111 

j = l  l=1  

making (Igi(h) 12) an approximately spherically sym- 
metric function of I hl. If we further assume equal 
groups, with isotropic, real, positive group scattering 
factors 

g(Ihl) = (Igt(h)12) in, (5) 

then from (1), (3) and (5) 

( I (h))  = A -~ NggZ(Ihl)exp(--2Bts2). (6) 

* Expanding the Debye formula (Debye, 1915; Main, 1976) for 
spherically averaged groups 

,t sin (2nlhl Irj-- rtl) 
(Ig,(h) 12) = Efj f t  

1=1 t=l 2nlhl Iry-- rtl 

we obtain 

ni 
(Igt(h)lZ) = ~ ~ fjft (1 --~nZlhl21r/- ril 2 + terms of order 4 

J=l  l=l  

and higher) 

and at very low resolution the terms of order 4 or higher become 
very small for almost all of the atomic pairs. 

Assuming that the groups contain roughly the same 
number of equal atoms n, extrapolating (4) to I hi = 0 
gives 

(gO)2 = n2(f0)2, 

where the superscript 0 denotes extrapolation to I hl = 
0. Therefore the mean intensity ( I  °)  obtained from (6) 
as I h l goes to zero is given by 

( i o )  = Ng nZ(f°) 2 A -1 

o r  

( I  °) = nNa(f°) 2 a - ' ,  

where N a = N~ n is the total number of atoms in the 
asymmetric unit. 

Fig. 1 shows the I curve, a plot of In ( i ) l n  as a 
function of d*, the reciprocal of the resolution 
expressed as the normal interplaner spacing in A. ( I ° ) ,  
is obtained by extrapolating the low-resolution part of 
this I curve (d > 14A) to d* = 0. Assuming the 
relationship 

Na 
<lF(h)lZ> = E f ] ( h )  

j = l  

holds at higher resolution (d < 10 A), we obtain from 
(1) for equal atoms as I hl goes to zero 

(IO)u = Na( f ° )  2 A- ' ,  

where (I°)n is obtained by extrapolating the high- 
resolution part of the I curve to d* = O. By combining 
the above we obtain n, the number of atoms per group. 

<IO>L 
n -  (10 >--------H" (7) 
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Fig. 1. The variation of the mean intensity (I) xn with resolution d* 
or I curve. The straight line represents the least-squares fit to 
these data expressed in equation (6). The exceedingly strong term 
100 which arises from the tight molecular clustering around the 
64 screw axis was omitted. 
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Application of (7) to both the high- and low-resolution 
parts of the I curve gives a value for n in the the range 
of 30 to 36. 

Assuming randomly positioned and oriented equal 
groups we use (3) to write the normalized structure 
factor 

IF(h)l 2 IF(h)l 2 
IE(h)l 2 = = 

(IF(h)l 2) N, g2(lhl)" 

The normalization factor Ngg~(lhl) is evaluated by 
applying (6) to the value of (I) obtained from the 
least-squares fit of the observed intensities to the 
expression (Karle, 1976) 

In ( I )  ~n = a -- blhl c. (8) 

Since Ng = Na/n,  where n is derived from (7), we can 
evaluate E000 = N 1/2 and therefore the unitary structure - , g  

factor 

E(h) 
U(h) = 

E000 

The data between 100 and 15 A are best fit by least 
squares to a linear function 

In ( 1 )  1/2 = 9.383 - 31.63d*, (9) 

where ( I )  is the mean value of the intensity for a zone 
of resolution having mean value d*, and c = 1. E(h) is 
then given by 

E (h) = F(h)/[ (I)1/2 A 1/2 exp (B  t $ 2 ) ] ,  

where ( I )  ~/2 is derived from the parameterized relation- 
ship given in (9). The implications of this normalization 
are discussed below. 

(b) Bui lding the matr ix  

From a set of M structure factors E(hl) ... E(hz) ... 
E(hM) we select a subset E ,  ..., E N where N < Ng. We 
assume these to be a set of random variables, and 
calculate all pairwise correlations, which are nonzero, 
since the structure factors arise from a common 
structure, and are therefore not independent. In space 
group P~, the correlation of using E~ and E 2 is a third 
structure factor U(h 1 - -  h 2 )  = E(h~ -- u ~ M ' l / 2  which • . 2 ]~  • g ' 
can be obtained from the original set of M structure 
factors. In general, the correlation o o of two structure 
factors E l and Ej is a sum over the unitary structure 
factors U(h), given by 

a i y :  ~ ( U ( h i  G s - hi)) ~ exp(2nihi .gs ,  t), 
s t 

where G s and gs, t are the symmetry matrix and 
translation factor corresponding to the s symmetry 
operation (Castellano, Podjarny & Navaza, 1973, 
equation 2.4). Considering now the whole set of 
generating random variables E 1 . . . .  , En; E i and E i are 

correlated by the element aij of the Goedkoop matrix 
(Goedkoop, 1950). The a matrix is used to correlate the 
phase of the last term E N with the amplitudes and 
phases of the rest of the generating variables, E 1 
through E N_ r The 'regression' equation we obtain is 

N--1  

(P-N) = (--DNN) -1 Y DNj E:, 
J= 1 

where DNj is the last row of Dij, which is the matrix 
obtained by inverting a. 

We are interested in the phase, ¢PN, of /~N, the 
predicted value of the structure factor E N. As the 
prediction of ~0 N is of statistical nature, it is accom- 
panied by a figure of merit, fm, defined by 

f m  = I , (B) / Io (B) ,  

where Ii_and I 0 are modified Bessel functions and B = 
2 I ENI I ENIDNN. The quality of the phase prediction 
thus depends on the predicted and observed structure 
factor amplitudes. 

To predict other phases (from the set of M 
reflections) we sequentially set each desired structure 
factor to E N, and perform the corresponding regression 
on the set El,  . . . ,  EN_ r We have to recalculate DNj in 
every instance; however, we do not vary the set E ,  ..., 
EN-1 but only the last row and column of the matrix a 
keeping constant rows and columns to order N -- 1. 
This simplifies considerably the task of matrix inversion 
(Podjarny, Yonath & Traub, 1976). 

From a total set of M structure factors, we take the 
N -- 1 largest E values as 'generating reflections'. The 
matrix is then defined by the variables N and Ng which 
determines the scaling of the U's. Previous experience 
(Podjarny, Yonath & Traub, 1976; Knosow, de 
Rango, Mauguen, Sarrazin & Tsoucaris, 1977) shows 
that N should vary between Ng/lO and Ng/3. A matrix 
was evaluated by its capacity to predict correctly 
phases determined by MIR. Furthermore, the 'oc- 
cupancy' of the matrix, which tells the percentage of 
sites in the matrix occupied by reflections of known 
phase (reflections of unknown phase being set to zero), 
measures how much external phase information is 
incorporated into the matrix. For test cases, such as 
triclinic lysozyme (Podjarny, Yonath & Traub, 1976), 
an occupancy of 70% was effective whereas occupan- 
cies less than 30% were clearly deficient. 

N and Ng were varied to find the most suitable 
matrices for phase determination. We first assessed the 
matrix's capacity to predict phases already determined 
by MIR by following the discrepancy as a function of 
the matricial figure of merit (Table 1). Phases predicted 
with a high figure of merit should agree best with the 
MIR values. If there were too few reflections to build a 
suitable matrix, centric reflections were incorporated 
with the sign which best predicted the known MIR 
phases. 
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In order to establish the optimal matrix order and 
occupancy we initially addressed ourselves to only 107 
reflections for which MIR phases were available in the 
resolution zone 100-14 /k  and found that the matri- 
cially determined phases deviated from the MIR phases 
by an unacceptable mean value of 84 ° . Moreover, 
many highly erroneous phases were determined with a 
high matricial figure of merit. This problem reflected 
the fact that three very-low-order intense reflections, 
100, 300 and 003, were omitted as they had not been 
phased by MIR. Being centrosymmetric, these highly 
interactive terms were readily included by employing 
the sign which led to a positive definite matrix and the 
best phase predictions.* Table 1 evaluates the results of 
the matricial phasing of the 107 terms which were 
phased by MIR using 110 terms (107 plus the three 
very intense centrosymmetric terms). The matrix of 
order 4 having 30 group scatterers gave the minimum 
deviation from MIR phases for terms with a figure of 
merit greater than 0.75. 

(c) Determining the phase of 28 strong low-resolution 
terms 

Table 2 summarizes the results of the phase 
determination for all 28 reflections phased only by 
direct methods - including the three very strong 

* The phases of the 100 and 300 reflections were later shown to 
correspond to the phases calculated from the refined model, 
whereas the phase of the 003 reflection proved to be wrong - 
despite the fact that it was determined with a figure of merit of 0-99. 
This almost certainly reflects a systematic error in the MIR phases 
which was discovered after the structure was solved. 

low-order centrosymmetric terms. We used matrices of 
order 4 and 44% occupancy employing 30 group 
scatterers. These parameters were indicated as optimal 
by the test case described above. The correctness of 
this choice was subsequently borne out by two criteria. 
Firstly, the matricially determined phases deviated 
from phases calculated from the refined model by a 
mean value of 73 o. This compares favorably with a 
deviation of 77 ° for the 107 MIR phases. More 
importantly, this case shows a favorable inverse 
correlation between figure of merit and phase error in 
that 36% of the previously unknown phases were 
determined with a figure of merit greater than 0.75 and 
a mean phase error of only 44 o. 

The effect of matricial direct methods is convincingly 
seen in Fig. 2 which contrasts the MIR map with a map 
containing the same structure factors plus the 28 
structure factors phased with matricial direct methods 
and weighted with their respective figures of merit. 
Large regions of the map have been voided of 
significant density and are clearly solvent; thus the 
molecular envelope has been roughly determined. More 
objective indications of improvement were the fact that 
density wrongly located on dyad axes (including the 6 4 

screw) was considerably attenuated, and that the 
remaining density encompassed the sites marked by 
heavy atoms covalently linked to specific residues. 

Conclusions 

After the identification of the molecular boundary, the 
electron density map was more interpretable in terms of 

Table 1. Comparison of 107 low-resolution (100-14/~)  phases determined by both matricial direct methods 
(~A~) and MIR (,fiR) 

Number of terms in parentheses. 

(~MAT ~MIR (0) 
Matrix 
occu- Number Range of figure of merit (fm) 
pancy of 

N-- 1 (%) groups Overall  0.0-0.42 0.42-0.75 0.75-0.84 0.84-0.87 0.87-1.0 

4 44 20 77.8 (107) 90 (45) 60 (32) 91 (15) 67 (4) 64 (10) 
4 44 30 76.2 (107) 78 (58) 88 (30) 37 (7) 37 (8) 117 (3) 
5 37 30 72.3 (107) 73 (60) 80 (28) 45 (10) 101 (2) 95 (2) 
5 37 40 71.6 (107) 71 (61) 73 (34) 71 (7) 27 (2) 174 (1) 

Table 2. Comparison of 28 low-resolution (100-19 A)phases  determined only by matricial direct methods ((~IAT) 
and phases calculated from the atomic coordinates of a refined model (¢piOD) 

Number of terms in parentheses. 

~MAT__~MOD (o) 

Matrix Number Range of figure of merit (fm) 
occupancy of 

N -  1 (%) groups Overall 0-0.42 0.42-0.75 0.75-1.0 

4 44 20 73 (28) 89 (8) 45 (6) 76 (14) 
4 44 30 73 (28) 83 (11) 100 (7) 44 (10) 
5 37 30 77 (28) 88 (10) 83 (9) 47 (9) 
5 37 40 78 (28) 93 (13) 80 (7) 50 (8) 
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Fig. 2. Comparison of ten sections of the 4.5 A map of yeast 
tRNA~ et before (above) and after (below) the inclusion of 28 
intense low-resolution terms whose phases were determined by 
matricial methods. The maps are contoured at the same intervals. 

a molecular model. The immediate clues to the 
correctness of the new map were the deletion of 
electron density on the dyad axes (including the 6 4 

screw) and the coincidence of the remaining density 
with heavy-atom markers which had been previously 
established as attached to known residues of the 
molecule. The map was further interpreted in terms of a 
model and this model refined to an R factor of 25 % 
(Schevitz, Podjarny, Krishnamachari, Hughes, Sigler 
& Sussman, 1979). 

It is clear that identifying the molecular envelope and 
improving the electron density distribution by matri- 
cial phases of low-resolution structure factors played a 
crucial role in the production of an interpretable map. It 
is therefore worth while identifying and discussing the 
unique features of this procedure. 

Firstly, both real- and reciprocal-space direct 
methods have been applied with success almost 
exclusively at high resolution where the near-atomicity 
of the structures provides a firm basis for the 
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underlying assumptions.t The first well-documented 
successful departure from high resolution was the work 
of Podjarny & Yonath (1977) to extend the phases of 
yeast tRNA phe from 5 to 3 A resolution after starting 
with the phases of a modified MIR map in which the 
negative density had been strongly attenuated. They 
attribute part of their success at medium resolution to 
the fact that the electron density of tRNA can be 
organized into substructures representing the base, 
sugar and phosphate groups and in the resolution range 
5-3 A the density can be interpreted in terms of these 
scattering groups. A more complete treatment of the 
relationship between scattering groups and direct 
methods will be presented elsewhere (Podjarny, 1981); 
however, it is worth analyzing the group scattering 
properties of tRNA in connection with the current 
work. 

It can be shown that the linear fit shown in Fig. 1 
and expression (9) is a noticeably better statement of 
the resolution dependence of the intensity than the 
more commonly encountered d .2 dependency and that 
at this very low resolution the contribution of 'thermal' 
disorder to this expression is negligible (Podjarny, 
1981). The Fourier transform of the exponential of a 
linear function shows that the spherically averaged 
scattering group is not Gaussian in character but a 
rather flatter function 

g(r) ~ 1/[(b /2n)  2 + r2] 2, 

where r is the radius of the group, b/2zc represents the 
radius at 0.25 of the maximum density, and b is taken 
from (9). 

Taking 2.5(b/2z0 as the effective packing radius:l: 
the molecular volume of crystalline yeast tRNA~ et 
(Johnson, Adolph, Rosa, Hall & Sigler, 1970) can 
account for 30 to 35 overlapping scattering elements 
which closely approximate the 30 scattering groups 
that produce the optimal matrix. Since the diameter of 
an RNA helix and thus the full reach of a base pair is 
roughly 25 A and there are 30 secondary and tertiary 
base pairing interactions, it is tempting to speculate that 
the scattering groups that dominate the resolution 
dependency used to best normalize the very-low- 
resolution intensities are base pairs. As a base pair 
contains 42 or 43 nonhydrogen atoms, this speculation 
is roughly consistent with the value of 30-36 derived 
for n, the number of atoms per group (equation 7). 

This speculation can be extended to the nature of the 
peak at 13.5 A in Fig. 1, which when inserted in the 

t Direct methods have successfully solved the distribution of 
heavy atoms in isomorphous heavy-atom derivatives of proteins at 
low resolution (d _> 6-8 A). However, a low-resolution study of a 
heavy-atom constellation composed of a small number of widely 
separated strong scattering elements situated in a unit cell large 
enough to accommodate a protein is the effective equivalent of a 
high-resolution study of a small structure. 

~: In terms of g(r)/g(O), this is equivalent to r = 2.81a in a 
Gaussian curve. 
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Debye formulation suggests that within the dominant 
low-resolution scattering elements there is a charac- 
teristic spacing of strong electron density at about 
16 A. This would correspond to the spacing of the 
opposing phosphate groups in an RNA helix. By a 
similar analysis the linear dependency of intensity on 
resolution between 10 and 6/i, would correspond to a 
group scattering density of roughly 3-4 /~  radius and 
which probably represents the individual bases, sugars 
and phosphates, of which the phosphates are the 
strongest scattering elements. 

In summary, the normalization of the intensities may 
well be rationalized in the form of scattering groups 
(Main, 1976) and may form the basis for the successful 
application of matricial methods to the low-resolution 
'inward' extension of phase information. This idea is 
currently under study (Podjarny, 1981). In any case, 
our experience suggests that we should continue to 
apply reciprocal-space direct methods, where appropri- 
ate, to improve the low-resolution imaging of macro- 
molecular crystal structures. 
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